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Mark Strovink

Professor
Particle Experiment

Mark Strovink, Ph.D. 1970 (Princeton). Joined UC Berkeley faculty in 1973 (Professor
since 1980). Elected Fellow of the American Physical Society; served as program advisor
for Fermilab (chair), SLAC (chair), Brookhaven, and the U.S. Department of Energy;
served as D-Zero Physics Coordinator (1997 & 1998).

Research Interests

I am interested in experiments using elementary particles to test discrete
symmetries, absolute predictions and other fundamental tenets of the Standard
Model. Completed examples include early measurement of the parameters
describing charge parity (CP) nonconservation in K meson decay; establishment
of upper limits on the quark charge radius and early observation of the effects of
gluon radiation in deep inelastic muon scattering; and establishment of stringent
limits on right-handed charged currents both in muon decay and in proton-
antiproton collisions, the latter via the search for production of right-handed W
bosons in the D-Zero experiment at Fermilab.

After the discovery in 1995 by CDF and D-Zero of the top quark, we measured
its mass with a combined 3% error, yielding (with other inputs) a stringent test of
loop corrections to the Standard Model and an early hint that the Higgs boson is
light. If a Higgs-like signal is seen, we will need to measure the top quark mass
more than an order of magnitude better in order to determine whether that
signal arises from the SM Higgs.

Current Projects

A continuing objective is to understand better how to measure the top quark
mass. Top quarks are produced mostly in pairs; each decays primarily to b + V.
The b's appear as jets of hadrons. Each W decays to a pair of jets or to a lepton
and neutrino. For top mass measurement the most important channels are those
in which either one or both of the W's decay into an electron or muon. For the
single-lepton final states, we developed in 1994-96 and applied in 1997 a new
technique that suppresses backgrounds (mostly from single W production)
without biasing the apparent top mass spectra. For the dilepton final states,
where backgrounds and systematic errors are lower but two final-state neutrinos
are undetected rather than one, a likelihood vs. top mass must be calculated for
each event. During 1993-96 we developed a new prescription for this calculation
that averages over the (unmeasured) neutrino rapidities, and we used it in 1997
to measure the top mass to ~7% accuracy in this more sparsely populated
channel. In both channels, further improvements to measurement technique as
well as accumulation of larger samples will be necessary.



While studying data from the 1992-1996 CDF and D-Zero samples that contain
both an electron and a muon, we became aware of three events that cannot easily
be attributed either to top quark decay or to backgrounds. Generally this is
because the transverse momenta of the leptons (electrons, muons, and neutrinos
as inferred from transverse momentum imbalance) are unexpectedly large. We
anticipate confirming data e.g. from the D-Zero run that began in 2001.

Transverse momentum imbalance is a broad signature for new physics. For
example, in many supersymmetric models, R-parity conservation requires every
superparticle to decay eventually to a lightest superparticle that, like the
neutrino, can be observed only by measuring a transverse momentum imbalance.
Reliable detection of this signature is one of the severest challenges for collider
detectors. D-Zero’s uniform and highly segmented uranium/liquid argon
calorimeter yields the best performance achieved so far. Building on that, we
have developed a new approach to analysis of transverse momentum imbalance
that, for a given efficiency, yields up to five times fewer false positives.

Recently we have grappled with the long-standing problem of searching with
statistical rigor for new physics in samples that should be describable by
Standard Model processes - when the signatures for new physics are not strictly
predefined. We have identified plausible methods for performing this type of
analysis, and have exercised them on D-Zero data, but the methods involve
sacrifices in sensitivity that we are still working to mitigate.

Selected Publications

S. Abachi et al. (D-Zero Collaboration), “Search for right-handed W bosons and
heavy W in proton-antiproton collisions at Vs = 1.8 TeV,” Phys. Rev. Lett. 76,
3271 (1996).

S. Abachi et al. (D-Zero Collaboration), “Observation of the top quark,” Phys. Rev.
Lett. 74, 2422 (1995).

B. Abbott et al. (D-Zero Collaboration), “Direct measurement of the top quark
mass,” Phys. Rev. Lett. 79, 1197 (1997); Phys. Rev. D 58, 052001 (1998).

B. Abbott et al. (D-Zero Collaboration), “Measurement of the top quark mass
using dilepton events,” Phys. Rev. Lett. 80, 2063 (1998); Phys. Rev. D 60, 052001
(1999).

V.M. Abazov et al. (D-Zero Collaboration), “A quasi-model-independent search
for new high pr physics at D-Zero,” Phys. Rev. Lett. 86, 3712 (2001); Phys. Rev.
D 62, 092004 (2000); Phys. Rev. D 64, 012004 (2001).
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GENERAL INFORMATION (13 Feb 01)

Web site for this course: ht t p: // dOl bl n. I bl . gov/ 110bs01-web. ht m .

Instructors: Prof. Mark Strovink, 437 LeConte; (LBL) 486-7087; (home, before 10) 486-8079; (UC) 642-
9685. Email: strovi nk@ bl . gov . Web: http://dOl bl n.|bl.gov . Office hours: M 3:15-

4:15, 5:30-6:30.

Mr. Gesualdo Riday, 279 LeConte, (UC) 642-5647. Email: gesual do_ri day@ahoo. com . Office

hours (in 279 LeConte): W 3-4, Th 2-3.

Lectures: MWF 10:10-11:00 in 343 LeConte, and Tu 5:10-6:30 in 308 LeConte. The Tu 5:10-6:30 slot will
be used occasionally during the semester for the midterm exam; for reviews and special lectures; and for
lectures that substitute for those which would normally be delivered on F 10:10-11:00. Lecture attendance is
strongly encouraged, since the course content is not exactly the same as that of the texts.

Discussion Sections: Tentatively M 1:10-2 in 331 LeConte, and W 5:10-6 in 5 Evans. Begin in second week.
Taught by Mr. Riday. You are especially encouraged to attend discussion section regularly. There you will
learn techniques of problem solving, with particular application to the assigned exercises.

Texts:

- Griffiths, Introduction to Electrodyamics (3" ed., Prentice-Hall, 1999, required). Probably you already
bought this book for 110A. If not, get the fourth (or later) printing, which has fewer typos. Most of you have
already formed an opinion about this text, which | feel is well written and pedagogically effective, though its
scope is modest and its problems are sometimes not very physical.

« Pedrotti & Pedrotti, Introduction to Optics (2nd ed., Prentice-Hall, 1993, required). There is no uniform
choice of optics text for this course. Hecht, Optics; Fowles, Introduction to Modern Optics; and, for a
heavy-duty treatment, Klein & Furtak, Optics all have been used in various incarnations of 110B.

« If you are planning to attend physics graduate school, it would be smart now to purchase Jackson, Classical
Electrodynamics (3" ed., Wiley). Optionally, it can be useful in this course.

« Optionally, Taylor & Wheeler, Spacetime Physics (Freeman, 1966, paperback) can be useful for the portion
of this course that is devoted to special relativity.

Problem Sets: A required and most important part of the course. Twelve problem sets are assigned and
graded. Problem sets are due on Thursdays at 5 PM, beginning in week 2. Deposit problem sets in the box
labeled “110B Section 1 (Strovink)” in the second floor breezeway between LeConte and Birge Halls. You are
encouraged to attempt all of the problems. Students who do not do so find it almost impossible to learn the
material and to succeed on the examinations. Late papers will not be graded. Your lowest problem set score
will be dropped, in lieu of due date extensions for any reason. You are encouraged to discuss problems with
others in the course, but you must write up your homework by yourself. (In a small class it is straightforward to
identify solutions that are written collectively; our policy is to divide the score among the collectivists.)

Exams: There will be one 80-minute midterm examination and one 3-hour final examination. Before
confirming your enrollment in this class, please check that its final Exam Group 6 does not conflict with the
Exam Group for any other class in which you are enrolled. Please verify now that you will be available for the
midterm examination on Tu 20 Mar, 5:10-6:30 PM; and for the final examination on M 14 May, 8-11 AM.
Except for unforeseeable emergencies, it will not be possible for the midterm or the final exam to be
rescheduled. Passing 110B requires passing the final exam.

Grading: 25% problem sets, 25% midterm, 50% final exam. Departmental regulations call for an A:B:C
distribution in the ratio 2:3:2, with approximately 10-15% D’s or F’s. However, the fraction of D’s or F’s
depends on you; no minimum number need be given.



Week Week
No. of..

1 15-Jan
17-Jan

2 22-Jan
3 29-Jan

4 5-Feb
5 12-Feb
6 19-Feb
7 26-Feb
8 5-Mar
9 12-Mar
10 19-Mar
20-Mar
26-Mar

11 2-Apr

12 9-Apr
13  16-Apr
14 23-Apr
15 30-Apr
16  7-May
11-May
17 14-May
19-May

COURSE OUTLINE

Topic

MARTIN LUTHER KING HOLIDAY
FIRST LECTURE (review EM waves)
EM waves in conductors; mirrors
Driven oscillator model for n(w)
Waveguides

Lumped-element circuits
Alternating-current networks
Scalar and vector potentials
Lorentz and Coulomb gauge
Retarded potentials
Liénard-Wiechert potentials

Fields of a moving point charge
Special relativity

Special relativity

Special relativity

PRESIDENTS' HOLIDAY

Special relativity

Special relativity

Special relativity

Special relativity

Special relativity

Multipole radiation

Multipole radiation

Radiation by a point charge
Radiation by a point charge
Bremsstrahlung and synchrotron radiation
Cherenkov and transition radiation
Matrix analysis of polarization
80-min Midterm Exam, Tu 5:10-6:30 PM
Matrix analysis of polarization
Interference and coherence
SPRING RECESS

Interference and coherence
Interference and coherence
Multiple reflections

Multiple reflections
Fraunhofer diffraction
Fraunhofer diffraction
Diffraction grating

Fourier optics

Fourier optics

Fresnel diffraction
Holograms

Holograms

Lasers

Lasers

Lasers

LAST LECTURE (review)

Final examinations begin
180-minute Final Exam, M 8-11 AM
Final examinations end

Griffiths Pedrotti Problem Due at
Set No. 5PM on..

9.1-9.3
9.4
9.4
9.5

10.1
10.1
10.2
10.3
10.3
12
12
12

12
12
12
12
12
111
111
11.2
11.2
11.2

14

14
10,12

10,12
10,12
11,19
11,19
16
16
17
25
25
18
13
13
21,22
21,22
21,22
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10

11

12

25-Jan

1-Feb

8-Feb

15-Feb

22-Feb

1-Mar

8-Mar

5-Apr

12-Apr

19-Apr

26-Apr

3-May
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n (Y +dT) n (VY + dn sot

Ar{/d"f’ g A,Br-ef/d'r = S/C
To=10yrs '
- | dndy

AT

o

%
=)
]

6’“'# = fauhqu = JH(Q.B?XIO‘?).

olag °

x
= 10.34

dr = 9%
.

x . .
The most boosted particles ' accelecat ors
(elec trous at (EP) have N = 12.2.



The distauce covered s

dx =pedt = (tankn)eledd) i
=cltanky )(cosh n) AT
=c Sl;‘krl ar r

Ax = 2¢ f;mi'wl 4dT :2cf‘3u{h (%2‘) aAr
]

2 !ejs

"

0
2z %L(caskﬁg"w—;) meters

2.84 x10°° meters

29,900 ffsbf yeers , 6r & 2% 7

‘dle SiRe crf the vwuivesse. So ouuf
A 10720 of Jt can be explored by man.

The time E.{.a‘p';'e({ on ea Th 15

At = ydt = coshy dr 1.

%o f

T {

t = shdl dr = 4Ss5an L |

4 4afu = 3° |
4leqs = 1.89 x 10'% cec '_
i

57,850 yrs (Campare 40 yrs )

o
vadox.

This last result i€ called fl'«t’fww\'
It s net a pavadox because the egrthbouwel

twin & not aCce_Iemtmj.

1.1l FOUR - MOMEN TUM

“_.i'f‘ we w:?‘l'ﬁ % wra{(h E?(i’_&) iMI tﬁe j{lurm

2
kS
(rB-r‘—q)" = c‘(tﬂ-t‘)z—(xs—xﬂfﬂ (33"—"5) —(-?B-Zﬁ_)
= 2
=R Ug
with g = inner produc t of 2 4-vectors

i spacetime , 1t must be The cote that

2

gy =gty “XgXa ~YaYa ~ %%
and that the aner Prodncf c-f any 2

4 —vectors s :.nd?f)mde..nf of rffe-fl'.-uc_.ﬂ__
frame (mveriaut +o Lorewt? ‘f’fﬂvsfcrrw‘“ous)-

_-5_

The prope r tfime nteyval dr avd the rest

mess me ave algo

L-Ofe-«'f.i‘- !K‘Jl.((aa-{lﬁ._
Form P = m:{.l; ) t‘mT rS‘

(PB’PX)PHJP}>=(WC;:_§ y m

Note that At/dr = y
So

dx pody o d

Ar dt’ AT/
so Ax/dr = g A%/4¢ .

\ de

=

(yme, ¥YMUx 5 MUy ,B/le;‘)
(ek, B

must -fm;fm-m like fe. must alsy be
a 4 -vector. I‘f rS- (‘a”ed f!{c fovr—mowrm‘lum.

P (1-20)

r-)

W(’ [ RV wr'l.ft’.
E?cf i/E/c?
P; = A P){ l le'l N as fl‘l‘ (’H’Z).
P2 [ P2 J
~

The fcnjfffzo{ P LS' Loreutz inverient awd we
can evaluate it :n-.a fmme. i whiclh fthe
CM of The systewd it describes 15 wat iu_{)v:v;j‘-
(ﬁ——o}y:r).ﬂou

P-z = Ez?- ~I}>‘f"‘ - wmic?

frue @y f.res-f
frame fnmﬂ value

Ths s the fwy\dammt‘a[ @?u.,!,trﬂvl fo—r

sofwnj relativistee kinewatc s Pmbfewc.

(1.22)

What £ E7 Make a Taszar Serce s expawhov{

2

z
M c € /v
E = g= met( I+ L= +-
(-7 y™ (redges)
For Uv«c Hus i€ E = me? + -zi.muz' where
the Jast term 15 the nonvelatevishic

Einehe Cuergy. e u»r"fl."rpr'ff the -{-usf
1erw as The rest mass epercy :

mer + T (1-23)

E = ymcf

ffafal' energy { £ ke h.ceﬂwskr

redt mass f,ne..rs-lr
We see The pasc{bfh‘ij of cpwertmj rass
fo energy (lots of energy becavse ¢ s !arsa) :



1.12 cComMpTonN (PHOTON—ELECTRON) SCATTE RING

To lustrate the powe r o]f Eqﬁ-’&?) ](or' ‘
solvin. problews w relativistic kimewalics,
we. consider the Scaﬂﬁ’rwj of a qua uTuim

of Irjkt ( moscless yfr' oton) Bf! awn electron al rest.

- T

./ mass
)
<
\ photow

f
P P’ c‘{} = 4 —ppomenta

pheton e

EAY A VAV WS S [ ]

{4

p = (mc,,-O‘) because target electvon at rest.
g = (95,94,0,0)
Sinee phston moccless | g-¢ =0 6:’ gq. (1.22),

Se g, = ?o and we can write
i’ r .

? = ?oJ?o , 0)0); q = (?of, ?DuSB,ff;SmG,D)
Poblew @ whot s the :e.(atn'onsh:'P between
the ﬁ'ua{ Piﬂt'lCﬂ eﬂerEﬂC?J a vd ite fwﬂl
dujfe € wrt X7

Use enﬁrjyﬂmomt’u{uw agnle ri/aftop{ =
4 —nromeptum conservation :

q+p = ?’-,l-P' (thes s 4e£fu.at|bns!)

99 +p = P’ ,
(-9 +p]-lG-70+p] = P-P

(?—?')'((r.,?’)-;-ZP.(?,?:)‘PP.P "P{-P'

7°9-29:9"+9"q"+2p- (g=9D ¥ pop = p"p’

0 - ey (me)
2p-(q-9) = 2q-q’

me,0,0,0) (9,9, 9o~y 038, =¢S5 B, 6) =
= (90,%,9,0) - (70,)?50059 ,qJsm'6, 0)

T foFome
(1-24)

!

me (9099 ) = 9090 (1-086)
T o)
l 7% %

! 1
-;&(I—MQG-)E

This 1s AH- Cowp_iwl's fam.oui fr_nrw.uf&‘
L:Oﬂthrﬁna(u 4 s mu_fff@)hed bxf
Plavck's constoqt h, with the P}«.oton
wavelewdh A = h/g, . The n

f (d£., PrdEs)

}Af_ N = Ao(hougeﬂ with (1.25)

Ao = A/ mc

- -

A , the Compton wavelength sf the electon | s
/\ =

a4

27 x 386 X 0715

Plawck’s ceapstent s
h = 2a X .58 x FO-—'b eV sec.

/.13 SPACE _TRAVEL : PRoputStons CoNSTRAINTS

Aaawm cansider the spaucraft as viewed . i
in the cowmoving frame { $1-10) . In mfonitesimal
prope r time riterval AT the rocket weoleor

ejects ,pa.r'trrife #1 width enerqy de, avd
relatwe vefodtjo g -

T B
1~
P = (me, 3) (d.h«\ d?flltl"d
M: po&ﬁ.we‘)
..--.ig.‘#_' m—dm_/‘ —
E’ 1 e dp

-~
((ﬁ-«im)c + mz{éé{z, mcdﬁ)i P

In osc-jnwf the 4 —momentum to 'bar‘hcft‘ #1,
we med.,, p = (azmc.,xﬁmc) so that

?/Pa =g. In asm;m}j the 4 —neowevtuwmn
te the §(Pauu:raft, we used the fact that
(as viewed 1 the c:mo\/wj frawr_) the
sﬂpace.ua}if S nenrelativistic | so that

E ~ me*+ -!imu"‘.

I-f we asSume @ Pe;frc‘[h! e\fFrc:aer emg{nt ,
(.e. no heat energy radiated 1 rawndom
Alrpctlon5, both e“%‘f and ned neewlbne

will be conse rved :
‘ neglect , 2" oder

?DO = ',P" + P/ m :nff;rtfsfmﬁts .
}MC— = (f_f, - Cb(‘d’“_)f- + ™M d—ﬁ“}z (t‘;ﬂoerhtke
O = ‘g, 6{_CE" -!-mcdﬁ ( 56;:;?‘{ €

Su.b$+i"tu.{'wjl ic_E.J = CAW' ‘f\mm t‘!e 'ﬁmeb‘l':(?.
e?'._"!, the Scpaoekae: e75- becoines

B | = 1B 2.
Agam we set HE (2 dn , where n 5 the

boost , smca rocket 1S nonrelativestec
n mmuwﬂj frawe.



A addit onal porticles (#2,%3, etc) are
ejectec{, the boosts [{vh are addtive .

M final Iaiml
qﬁm'l-(qoao) = J B,
g
) ’?{rha.{ ﬁ;luyﬁ al (1.26)

Chemcal roclcet engines achieve maximum’
B, ® 4 x 03 ru/setci_./c. A .33 x /0™S .
Theu to achieve a booSt of 10.34 (sece
él !0) re?u.:res

An Mo
Mg

My = mo % (@ number beyond
calcu la tor l’MjC)

)
- 7.8 x10

Chenucal er\;lnes will not suffice.

Relativishe eug.nes emit Parffch’s al B, =1.

If TJ*{‘L{ were it gffrt,ae«t

Mo
An ‘;;f

= 3.1x 0

10 -34

% m

¢
Manned paqd'oad requres Mgz 10T
'f-a‘r .’f& Sup{:rrt “LLQ"
= 3.1x :0 T

°

3 a rocket heavier thoam an awcroft carmer_ |
(< 10°1)

Note that Eq. (t-26) becovmes

- mﬂ
Vsl = €piIas2

,‘]C the eﬁ'tdlwf.-t € c’fv the ¢ mnc, e
: f /
i wnol umt-j.

(1-2%)

Prese ut relativistic t’.wf‘}(r\( cauc,epls .

e are grns‘cl;[ IK‘C‘fIC—-a"e#é (e «,)
o Jeave moSt a'.f the 1 r fuel on board
so thal my/m, caunot be < 1.

(Exawpie : laser Powucd by bqtteries)

L{)Nn{‘f
mve ranl

1. 14 OTHER FOUR —VECTORS

In addut iow to

= (C.t, 'f>
p - (E/c.,:ﬁ:\ (Ez ymc?, ?iymﬁj >
jfreq;;e,.«thj eucountered other 4 —vectors
xre a
- o) - S=42 42
3 = (g—a-t,—V) (\_/‘"“-;‘ “fa‘j“ %)
t-k-v)
(g)C: ) -E) as €{(w
{_, “wa ve vector"” (1 28)
o = a,ugulor ffeti.
A = A) “vect
((P ’_h/ __/ Pict::;ta[ “ (!-2‘?)
} B & YUXA
where o wn BA
Z £z -V cat
Because cot Prpc{,ucts of 4-vecters are
L,Drt?ut%‘ IH.VRV'G.Kt , S0 are
R-r & wt -E,’-" "Pka se c\f o wave
0.0 = e X 9% "DAlewbert ian”
; = 0 —C_I;tt“- D Alembert an
2.A = 9¢ L¥.A (=0 when A
Cbt gat;,gfIQS tb\t_’ \
" oreate 3au‘jt‘. Mt‘“"; ﬂ/
Wheu the "de Bro J'é-mowgufum” equatio
ldﬁfv. h/A ié uwbrnf’({ Wlflﬂ t{la.
"Plewck frf' quewcy " ??uq‘t tow E =hv ,
L&Su&j‘
IEl= 21/, , (1-3+)
both Eﬁmtemt can bt ?umman%rd b\r
(3)ep < fel= B(2B)  4a

f Qtﬁlg rS- 4 @?uatlov\‘.s)
”3904'!.;'0{1:284 de Br‘ujl.é eqi

Another 4-vector s

dewns -ht..f {es u/cm'?')
s =y LN
(cp, J >

Current dens hf (eSu/cm L sec)

_7__

§ o

-af+T7‘-j=0

(1.32)
(¢ kﬁrjﬂ. Conge rmttav\:)



[ 15 LORENTZ TRANSFORMATION OF
ELECTROMAGNET IC FIELDS

The fo ot that

v

1 (v a0 o] (¢
Ax | _ -yP Y o o | Ax
Afz 0 o t ol | Ay
As o o o 1) | A
and B= UxA . | cgs
E --Ve— 2t [unts!

lea As o{{sr some Cdg,ebrq teo '{f«_(; )Lo.h"ouumj

tru us‘fffwa‘t'mv( ??udfn‘mi ‘f'rr' E and B

F

' -

, = {(El-kﬁ\( B)

Ji = x( Bf_gx E) (1.33)
E, = E,, B// = 2y

A 7
where ”_L“ means L to B awnd "

A V4
means Para”f[ to ﬁ‘

A consequence of Eq. (1-33) e that
EF - BF 1s a loreutr mvariant.

1.1 RELATIVISTIC DOPPLER SHIFT

-

S/ Lj’ “ L:il S
rad pe
Sowrce 0
Apph, the durect
Lore atz -f'ramsfo“rm.a'hou' e/v -
(£q. 1-12) to the x,x’
wave 4-vecter b (£g.1.28) C dbserver
, Ve
W/ w/ c a"fo_;?' "
S NRIS
ke ke
/
= %J = (-C“{ —((Sk,( (1-34)

lab phase

Let the, ug)‘ou‘i‘j of the wave be RAgc
(B =1 for a light w“”e)'('rapen'oa)

B|= 2 . w4 2MY . w
I A Bsc T Bsc Bs¢
So Et-? (1-34) we may wite

Ry = lE[ oS = _(’-‘:]E oS B . Then

s

w/

XU)(!— ﬁussj
S

Relatiuishe

{w —(—%‘_ )| Dopp! (1-35)
¥ (1-L-cosé oppler
35 S}uft
S,rotcm;[ casSes :
o light wave =2 Bs=1
w = __.,f:{_“.’ (|3b>
(1 -Bcose)

o/ aPPmachmj (8=-0)

! | Legt wave :
erCedluj (e =T

.
! -+ z
o s - (B
y(1zp =
© s =0 (Source s at %emrt‘.h) where

HOHrel‘a'ttUlﬁ‘f'léa{[wl the;c (s ne
Doppler shift):
! 'Orfllna-r;.
o % ’ T-:Tfh/ (‘f':mé I
da'fatw»i

¢ ﬁ«f

w?’ U.J/
W= 1- 8, ) Vs,
SO ;_,_ﬂ-.usa
Ps

) Vwave
C.—. freskmau PIA?QH:!. Dopple( shaft, Note

sonic brim at cos6 = Ve /Vsowrce - )




University of California, Berkeley
Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 1

1. Griffiths 9.11.
2. Griffiths 9.18.
3. Griffiths 9.19.
4. Griffiths 9.20.

5. At the rate of 1 card/sec, psychic Uri Geller
(http://skepdic.com/geller.html) turns over
each card in a deck. He communicates by “para-
normal” means the identity of each card to his
assistant, from whom he is shielded with respect
to sound and visible light.

As a physicist, you consider all EM waves to be
normal. To test the notion that Uri’s talents defy
the laws of physics, you resolve to design a shield
that will prevent Uri from using any relevant EM
frequency to communicate with his assistant.
(a) Roughly what minimum EM frequency must
Uri use? (Hint: Consider that a 56 kbps modem
operates over audio telephone frequencies.)

(b) Design a spherical shell, enclosing a volume
of 1 m? for Uri’s comfort, that will attenuate
the EM waves generated by Uri’s brain to =
1/400 ~ e~% of their original amplitude. Use the
minimum EM frequency that you calculated in
(a).

(c) How much does your shield weigh? (Try to
design the lightest shield that will do the job.
Does it help to use a ferromagnetic material?)

6. An electromagnetic cavity can be considered
to be just another resonant oscillator, with a
quality factor () equal to the ratio of the energy
stored to the energy dissipated during the time
interval At = 1/wgy. Consider a cubical box of
side d whose inner surfaces are plated with an
adequate thickness of silver, which is an excel-
lent conductor. This cavity has a fundamental
resonant angular frequency equal to

WOZEXﬂ—ﬁa

where the first factor can be identified from
purely dimensional arguments, and the second
factor, a function of the cavity’s geometry, is of
order unity. Apart from a different geometrical
factor of order unity, the @ of this cavity turns
out to be of order

v

@ Ax—17

where V' is the cavity’s volume, A is its inside
surface area, and x~! is the skin depth. Thus,
Q is of the same order as the ratio of the cav-
ity’s volume to its “skin depth volume”.

(a) Taking d = 10 cm, what @ can be achieved?
(b) If the cavity is kept at the same size, would
it help to operate it at one of its higher fre-
quency modes?

(c) If the cavity is always operated at its fun-
damental frequency, would it help to build it
bigger?

7. Show that the results in Griffiths Eq. (9.147)
are equivalent to the familiar formulse

T —
R 22 Z
Zy + 24
27,
T h
ZQ+Zl,were
E,
ZEN—O,
Hy
E,
R= ~0R,and
Ey,
TE&,
Ey,

and where Z is the characteristic impedance of
the medium, R is the amplitude reflection co-
efficient, and T is the amplitude transmission
coefficient.



8. Consider a dilute material with € = ¢; and
= po, but with slight conductivity o = Geqw,
where 8 < 1 is a constant. EM radiation of
angular frequency w is normally incident from
vacuum upon this material.

(a) Relative to the incident field, show that the
reflected electric field has a magnitude of /4
and a phase shift of 90°.

(b) Show that the transmitted wave is attenu-
ated with a skin depth equal to \o/27 divided
by B, where A\g is the vacuum wavelength, and
that its H lags E by a phase shift equal to (/2.
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#2. ( GrifFths 1.18)

a) P.4) = exp(- a/e) E/Or(ﬂ) (eq 9.120)

ZJ““ fa FLH = g_... E 2 EGEF . Er' s nl (‘F"q\ q‘ ?G)
+d Hk_hrf:u.t. CT-
O averaae (ndem of

e
~ e, ﬂ“/o* = e.ﬂn% (o) L Pefrtion f2r qluss
= FFox(0a (15)/( 6 pu) & o (Table 21)

[ﬁ.\' = 20 seconds

b) For  siloer ¢ /9-: 1.59x 0
7 " (:"25""-'0? ? we = 27 <o’ < 855 =0 = .56

W
’ =wf EA Gk . Gr o AL
“1(%.00) 17z (v’ '+ () [) J 2

And thus, the skin depth is ¢

" Table 7.1) €%€, 4= "y 27

(‘1 123.) a = ..--- - ‘/ = " -4
- /MJA{' .?J?“KU  C. nglﬂ?xlf-’?fxb 2 (014
There fore. the silves (;oa.l??n.é Shald b= {J.Dxl[}#;m i
C’) T = / g = C:;MG? (Table 1) &u’ﬁ.-(fmr;o‘)-(ﬁ.ﬂﬁ*{dll)
B = GxIp™2

O de  therefor, K x [afom eq (9q.12¢)
2

Aw, )
A— = ???r_‘r f' ;2;_, = /32‘ Z 4 @_4; -
| AoH, Zeio oo = vror Lo M (eq 7.124)

Wi capper

A Vacuym
r}um:;-:.r =AY 2 b0 10° = P/‘Qﬁws] A== 38 =[300m
- V- L-E




# 4. Griffiths 9.19)

iz
9w T

when @ 3 O we use the binemial expansien for  the dqude . |

W
" éﬁi‘“—(HL[gL)‘uI)z
z e
e L O .o &
2 Jz €4 2. c

4 =/JE ~ %E (eq 9.128)

]Eur pure —akres 3 2 E = ef—E.., = BG.IE__ (T-‘,J:;l.f_ ‘-1-,2..)

M = /-{D[HJC,.,) = M, (1-90xp"%) =~

° [.Tq.IIDI.L G.I:}
T = | /Z.f)xlﬁs

(Talole 7l
oy
53 S 2 / g0. | (ﬁﬁﬁ%c?tﬁ ) :Z{"qﬂm#”j
Y/ 2.9x10% & x (0
b) When O » we
Kk = & [gn S = (Ao (eq Aze)
voo2 aa) 2z
A= 2% ~20/%c =224 o Jd=K ]
Z7
d = ..!-— e 2 oJ = IDIS E-*xga M= M 0"4!0?62”!"
K JUMT

= -..E :- |'. -?_ -‘S“
/:‘o*"'~#rxm’7.m? =/4IU :ﬁgxm M ]

* Thesefore L‘:,!ﬂ‘ does nof Ptﬂc-{'fh{'ﬂ f;f ats fhe r?ﬁ.fa! “which @ccoents fer
its opacity.




) {rom Pﬁ."*‘ (b) we hed kxiC

Al[ac.{ @ : J_QH*I(.K*/HJ (eq ‘MS'—E)

Thf-r\'..{;f‘t. & = -I-M'r Lt } = L!L 5:)

B (O TI Gt T»wue eqla.i37)
A '/E""J el J Sar > 2
br e hpihudd = B. o [w0” =107 o[ 15775,

E, o'

M (GeifFiths 9.20)

Q) (U= 'JZ(GEE""':&S;>

LK

!
f € {&E_ﬂf_oﬁz(l{%-w‘f'*’ég)*l/ﬁ{ [3.1(205!!"#{2--:;_.-1"1-35—*6?))

o ) €q(1.13%)
N EE S B
_ -Zr2 z
‘j‘;;e. (&'E:+;&Euwﬁf—&‘ff/ eq (4.137)
-ZKE i
e T eer( f—r@

L
L- o2& 2 lf_.fi‘-,: ) eq 1i26
e e =, i o (. k& )
- %TEFZKEE-E: (}-_(_: __2:_)
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CUeleckric ? Ele - ’“E’\/ f"" .-E.AJ" €4 q"?’?)

(Ut..l..u:_:? J[ +("E = D/J Hnsnr_ﬁ.‘r_ Coﬂ{'r'lb ":rﬂ""i
t{lw-nj.h ciawzﬁa..i"c-ﬁ.

b) I:.{S:):

¢ ‘“;{"{E Exb2> = ;‘Z (BB, a“"ﬂccs( 2 -wt+3c)
coslhkz ~aﬂ'+5-E rep) 2>

= L’/VL EQB, E-ZF{E:C_DECD ( Frou Pn—.hkcm'ﬂ:l) (ﬁ‘[ ‘TJB‘E)
= Zi o (% wa@) (eq %.135)
Alss, k& _ . EERD e =
K ‘I"ﬂn(p S (:I-c_'z‘-ff't"")”z- K-
Thos }—I = XM B2 e  °1F J
ZAA

RS

a) In a deck thee are $2 cawrds, fo indicate which cord he has
PILHEC} he IL--JIIu [‘]Lﬂé G blr'{'g.

Sthee, 52 x 2% = G
ﬂ'lus, Uel nt@r}s jrc: Bmd cfa.\*m nﬁ" Fre hP-t-Et} c.f’,
E{Emd Cand C %ﬂ:and

L‘U:t l.-..H“. a3 50 meE 'H‘ii? ‘H']t, ;'nf;rﬂml-:gn ;.5 Sr_.n,r ;1“1 (o} alﬂ-{'u‘- 'rc.\.'ahlun
(high/Row peak) via an EM wave,




| L
__/l\u_ﬂu/\ > {rc_: +his s o '::T.-hr\u.}- Jr‘r'ﬂnam'.'ﬂ!...-._z
o o \/ I IBGDE (. & b 't".‘_-. uF ﬂT‘rMQL'ﬁ uﬁ)

\ "&'E’C.-m?d

The above 'a’ﬁﬁnc«l hos «a Prﬁﬁ.uthﬂ-‘j Y4 = 3H?:1l

This mgﬁN the. i nimum Tregue_m; Ui can Use, however, Fo be suie
about Hoe B.C.r_ur'm of the. ne sheuld Et."_nd o Wl wl foiel e
6&-’1’6\ (:_q‘_‘_';llﬁ,¢1lﬂ\j c:-l‘ G-H'E-.

B) The. shen éﬂf’ﬂﬁ e;[ua,\s'-

§:L=L.'Z( )& L T2 few -
KoY () ) Wilealo °P¢
J o s
-G

To attenuate the EM waves jen:mfté bué Uri's brain 46 = L ¢

Lo
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University of California, Berkeley
Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 2

1. Griffiths 9.21. 7. Show that the characteristic impedance
Zy = AV/I of the coaxial cable in the previ-
ous problem is

2. Griffiths 9.22.

1 Jpu, b
Zo = —4/—In—
3. Griffiths 9.23. 27\ e a

and that this result is equivalent to
4. Griffiths 9.24.

L/
Zy =1\ =
5. Griffiths 9.38. Consider the TE modes only. ¢’

where L’ and C’ are the cable’s inductance and
6. Griffiths 9.31 part (b) only. capacitance per unit length, respectively.

8. In the circuit (a), an impedance Z; is to be connected to the terminals on the right.

(a) For given frequency w, find the value that Zy must have if the resulting impedance between the
left terminals is also to be Zy. You should find that the required Zj is a (frequency-dependent) pure
resistance R provided that w? < 2/LC.

(b) A chain of such boxes can be connected together to form a so-called ladder network. If the
chain is terminated with a resistor of the correct (frequency-dependent) value R, show that its input
impedance at frequency w < 1/2/LC will continue to be R, regardless of the number of boxes that
are added to the chain. (This type of ladder circuit is called a lumped-element delay line. In the
low-frequency limit, the delay line’s characteristic impedance reduces to

L/
ZO - \/ a )
where L' o 2L is the inductance per unit length, and C” « C' is the capacitance per unit length.)

(c) What is Zj in the special case w = /2/LC? (You may find it helpful to note that the contents
of the box (a) are equivalent to those of the box (b).)
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University of California, Berkeley
Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 3

1. Griffiths 10.3.
2. Griffiths 10.5.
3. Griffiths 10.7.
4. Griffiths 10.10.
5. Griffiths 10.13.
6. Griffiths 10.14.
7. Griffiths 10.20.

8. Consider two electrons each traveling with
constant velocity [GcZ in the Z direction, sepa-
rated by a distance b perpendicular to the 2
direction.

(a) Working in the electrons’ mutual rest (*)
frame, find the force F}; with which one electron
repels the other.

(b) Using the fact that Ap’ = Ap, is a Lorentz
invariant, but At* = /1 — 82At is not, find the
force F, of repulsion between the two electrons
as evaluated in the lab frame.

(c) As an alternative to the approach (a)+(b),
work directly in the lab frame. Using Griffiths
Egs. (10.65-10.66), evaluate the electromagnetic
fields created by one electron at the position of
the other. Use these fields to evaluate the force
of mutual repulsion, and compare your answer

to (b).
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University of California, Berkeley
Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 4

1. Griffiths 12.6.

2. Griffiths 12.18.

3. Griffiths 12.19.

4. Griffiths 12.20.

5. Griffiths 12.32.

6. Inertial reference frames S’ and S coincide
at ' =t = 0. You may ignore the z dimension,
so that a point in spacetime is determined by

only three quantities r = (ct, z,y). The Lorentz
transformation between S and S’ is given by

ct! ct
o | =Lz ],
Yy Y

where £ is a 3x3 matrix.
(a) Assume for this part that S’ moves with
velocity

V = f[ex

with respect to §. Using your knowledge of
Lorentz transformations (no derivation neces-
sary), write £ for this case.

(b) Assume for this part that S’ moves with
velocity

X+y

V2

with respect to S. Find £ for this case. (Hint.
Rotate to a system in which V is along the %
axis, transform using your answer for part (a.),
and then rotate back. Check that your result is
symmetric under interchange of x and y, as is 'V,
and that it reduces to the unit matrix as 5§ — 0.)

V = (¢

7. The now retired Bevatron at Berkeley
Lab is famous for having produced the first
observed antiprotons (you may have glimpsed
white-maned Nobelist Owen Chamberlain, one
of the first observers, being helped to his seat at

Physics Department colloquia). An economical
reaction for producing antiprotons is

ptp—pt+tp+tptp,

where the first proton is part of a beam, the
second is at rest in a target, and p is an antipro-
ton. Because of the CPT theorem, both p and
P must have the same mass (= 0.94 x 10? eV).

At threshold, all four final state particles have es-
sentially zero velocity with respect to each other.
What is the beam energy in that case? (The
actual Bevatron beam energy was 6 x 10° eV).

8. (Taylor and Wheeler problem 51)

The clock paradox, version 3.

Can one go to a point 7000 light years away —
and return — without aging more than 40 years?
“Yes” is the conclusion reached by an engineer
on the staff of a large aviation firm in a recent
report. In his analysis the traveler experiences
a constant “1 ¢” acceleration (or deceleration,
depending on the stage reached in her journey).
Assuming this limitation, is the engineer right in
his conclusion? (For simplicity, limit attention
to the first phase of the motion, during which
the astronaut accelerates for 10 years — then
double the distance covered in that time to find
how far it is to the most remote point reached
in the course of the journey.)

(a)

The acceleration is not g = 9.8 meters per sec-
ond per second relative to the laboratory frame.
If it were, how many times faster than light
would the spaceship be moving at the end of
ten years (1 year = 31.6 x 10 seconds)? If the
acceleration is not specified with respect to the
laboratory, then with respect to what is it spec-
ified? Discussion: Look at the bathroom scales
on which one is standing! The rocket jet is al-
ways turned up to the point where these scales
read one’s correct weight. Under these condi-
tions one is being accelerated at 9.8 meters per
second per second with respect to a spaceship



that (1) instantaneously happens to be riding
alongside with identical velocity, but (2) is not
being accelerated, and, therefore (3) provides
the (momentary) inertial frame of reference rel-
ative to which the acceleration is g.

(b)

How much velocity does the spaceship have after
a given time? This is the moment to object to the
question and to rephrase it. Velocity (¢ is not
the simple quantity to analyze. The simple quan-
tity is the boost parameter n. This parameter is
simple because it is additive in this sense: Let the
boost parameter of the spaceship with respect to
the imaginary instantaneously comoving inertial
frame change from 0 to dn in an astronaut time
dr. Then the boost parameter of the spaceship
with respect to the laboratory frame changes in
the same astronaut time from its initial value 7
to the subsequent value n+dn. Now relate dn to
the acceleration g in the instantaneously comov-
ing inertial frame. In this frame gdr = cdf =
cd(tanhn) = (¢/ cosh? (n =~ 0)) dn ~ cdn so that

cdn=gdr

Each lapse of time d7 on the astronaut’s watch is
accompanied by an additional increase dn = Zdr
in the boost parameter of the spaceship. In
the laboratory frame the total boost parame-
ter of the spaceship is simply the sum of these
additional increases in the boost parameter. As-
sume that the spaceship starts from rest. Then
its boost parameter will increase linearly with
astronaut time according to the equation

Ccn = gr

This expression gives the boost parameter 1 of
the spaceship in the laboratory frame at any
time 7 in the astronaut’s frame.

(c)

What laboratory distance x does the spaceship
cover in a given astronaut time 77 At any
instant the velocity of the spaceship in the lab-
oratory frame is related to its boost parameter
by the equation dz/dt = ¢ tanhn so that the
distance dx covered in laboratory time dt is

dx = c tanhndt

Remember that the time between ticks of the
astronaut’s watch dr appear to have the larger
value dt in the laboratory frame (time dilation)
given by the expression

dt = coshndr

Hence the laboratory distance dx covered in as-
tronaut time dr is

dx = c tanhn coshndr = ¢ sinhndr
Use the expression ¢n = g7 from part b to obtain

dx = ¢ sinh (ﬂ) dr

C

Sum (integrate) all these small displacements dx
from zero astronaut time to a final astronaut
time to find

v = Joosh (47) - 1]

This expression gives the laboratory distance x
covered by the spaceship at any time 7 in the
astronaut’s frame.

(d)

Plugging in the appropriate numerical values,
determine whether the engineer is correct in his
conclusion reported at the beginning of this ex-
ercise.



Phﬂsic.ﬁ llo &
Hoﬂfahbrk #‘!f'
#l (GrifFiths (2.6) a .
; vatr” [
. Li)#f .Sfjnai' leaves a af +ime +q ) C
arrives a,f‘ E,r;.‘rH? at ;'ch, '|"ﬁ-‘—'~ ‘f‘n: -+ qu_
. L;jhf 5ignal laves b at time ?L*b ; 4 T 45—
arrives at Earth af fime 1, = _f_h ¥ c‘]h /c 4,
Thus,
At=t, -t = (Bhedite)- (Hedate)
= +: - }_: f (dh "éu.)/év C‘——"—'\(—'—'_':: 4
te L Eath tq

= At* ¢ (- VAt cos) /C
. dq is the Sisteree ]Qcm a ko Eabh
e ﬁli ( f - K/{.__ CC?S@-/ LY C!h 1S 4'11{_ c}rsf'mc_; (‘}gM b to Earth

As = vdt*s;n@ = Vvspgo At
() = V/iccoso)

?//]{_rt_ll,;rt_, Hhe appﬁ-l‘ch{’ \,rt_l.ﬁd*a S,

y _

' A vsinco 15 the aguarad veloo
Apperent At (=¥ cos) J

The voximMom value we get by lmlfmb e devakie <8 stifing 1T Rquad do

d‘e”q o V((r-‘iaca:cs»}cﬂsm - BN %ﬂiﬂ&)

a@_. (‘I'“M'CECGSC}):L T —~ =2

:’% (- Y cose) case = Ve sin (%




OS5 = ’fg_ ( cos’o « 5.'n1cﬁ-)

Coscy = Vo
[G'mx = cos” (Vi) I

)4/ ?%{ Max M{jfc_ )

v S (= Ve Vv

‘]h'q = -
ppesat —_——
Pﬂ' ; - v?’é-z_ I = 'J:“./L-L

a5 L Lﬁwﬂ(}o even +1\ﬁauah VT C |, therefere WL see ‘E’L’Lq}

fb(.aﬂowc/ﬁ{ u"c,'lac{-'bj Can e la/(jcr they the 5;“'-‘-&:} g]e b‘jh‘f‘.

H# 2 ( Gei ks 12.18)




@

i kjE:?f the order ":-"'F d-FF":jh';} the MD\T}N‘::ES da=s Mﬂi":f Irfj St tebed Fle

Grd-r_rj Pltms C:"-""d Uﬂ!ﬂf‘:Mq Wﬁ'ul_;;li bﬁ ‘jL.--IJ\ L;—_ﬁ']f_nj D:.\J-‘LD (L o
dFferent makric

3 (Grifriths 12.19)

@) v < o O
A =[] ¥ S © (eq 12.24)
O ) 1 O
o, d o |
fanh - = V¢ (eq 12.34)
tath = sinhor cosh’e - sinh'cr= |
Cashc*

Pa/ = ‘—I';__'_ = : _ CoshCr -
- fjfc" J I = tenh %

J cosh™ o~ snms.
I3 = cosho taahd = sinhes-

777&'1'. .r arg

!

Coshee-

C oS SAC ©

CC!'HPI:U"'{ l..._;IIH‘} R = "S:ﬂ{‘j cesg O
'Q-f"'-l"}-q Mﬂ«.'ll“.l‘fr' a o )

b) Einsfein's velociby addition rule
= o= Lﬁq Ivzrzf_*;) = _{;i__f ) uic - Ve
I = UV/e? = I = UV 2
=> tomp = Jwhd -taho-

j wohe '\'B-f‘-h':? = Ufe ,
| = tanhd tanh o

tanhes = Ve
tanh@ = tanh(@- (%)

using d hypesbeic friq. ety
u@,‘CP' = ﬂj“ﬁ'li




@

#if(G,.ﬂﬂl-hs. IZ-'ZE‘) (Mate: Using Prof? Straviak neoteding W LY, -l..-li-'") S{JﬁMJ
@y L= c*4t™ - ax* -89 -22" = (5-18)" - (16-8) = (8-3) - (0-0)"

= 0p-26-26 = @ timeli e

{j-) _{_:F H’!E. 'f..\l'f..ﬁﬁ GCcur .'E.imu“'m'.q-ﬂ"‘Jj .ﬁztr =0 - l‘I,:]:__‘HEJ",; Fhis case Llo-ld

be_ nn_.ac.&w:_, whidh b oisa (. Thos the cverts |camot occor SMu{'?mg)

39

) e traves 1 H‘q.'i’._ direstion PruM E) Fevserd A,

Ms\k.r-ﬁ the ‘1‘.‘*-‘1'3 in oin bme At= O/,
EF Hit [N PF‘ML dhﬂ’.ﬁ ['lf"l.xg 'H}m {'Ir\-(_ b
Svents vl eccur at the o plaes H“mﬁ"" 2F

at rj'].PF‘ru\'s- -]rw-xL-c;J
;—gﬂ

"\IL Pwk V%'L = l/z_, = W= 'L\def_. iy |I1n..: v O a3 1"-'"-4' e ‘b(

g

V= -5% - 53 ﬂ[

Bfc

_F"'.K

Al

by ) I = ALY - Ax? - A4* - Az = (3)" * (5-2) "+ O +0 = spaclice

D [Yes, con occur sty [ M vl 88720 thadfion viting
+hy Loraty traagformedios,

cat’ = Ylea - gax) =0 =D cat= 84X

-\ -2 - ; ¢ \
0. v = Lg%x:@%&a) =T 5;,;{\{_‘3:; A the x Yredi,

LEL/J M‘U\}‘S Cﬂ.hno{' Toeul ﬁ%m@ s\ j‘fl’lr‘fp L.-JG'L:HL&

M. quire. Mad Ax’ =
WL’chlfT Wit et

&,aj'::&%-ff-‘o Sa .}'hgj"‘ ﬁ.[“ wiodd e F'S'-H'V{-



F5(GefF s 12.32)

>
© ¢ a —
E.":ZMLE' ™M E!r mu, P_j,a-c

P,=QZNEC; Pm,{j’,ﬁ) PB:(E-?-'fPaerrg)

P.=(Mc 0,0,0)

* Pt P2 = Ps
(p+P)” = Ps
Popov 2pP T PP T PP
M*? « 2(zm**) + M= mic
[~ Ze7]
' PP = 4mM - PSS MmPeE = P = JzmMc

ﬁT:n;HA 5 PM & P;:?'Zi = \/‘_3- MC
= E «E, = &dm

r

E T inted

Voi = Preit® BENOEF oLt s =,




VESe (£ & :}_-,J) = Sc (cosws’, sinug)
vz

O @) ¥ O -¥%8 o\l o o©
Ces -sS N /=1 "f @] O CUD whp
SN Ccosth ¢, o 1 O -5 6 e

| © © Y TS -¥Bsine
= (o cose-sinC- ~74 Teoss ¥ S
!

-5nNo

SN oS- Cosc-
- T - Tﬁcgscga - 7‘/3 Snc-
" IBcese Vcog'o +5in' s TVcosssin® - SNG-(oss-
= "2 ?
TR snes VOSSN  SNCOSES Y sintc +cos‘e

w - VB /5 - B AL
{;M =\ -vBwz  (I+7)/2 =)/ 2
“YBLJI (/2 (+y) 2

* AD /gna-:} v — |

{{-.-HJ. — | o )
e | o
& L )

. A.l.&sf the resolt % SYMmebric vader Hie h*'c:dﬂwgn af X A o



# 7 - ~
peg == P+psr PP
L Z
Eh fina state
Mﬁv?r‘.a ‘L’ﬂ«’ﬁ"{H]{_j‘ U““B’H\j
P. = ( Eule, an,{:l,f:b} P{;'r = (‘fn’?PC,c:,@,m)

Po = ( Mg e,0,0)

P+ P = P it
(P # P)- (P ) = Pere Per = Per P = lGrgc™
PP, + 2P P rPube = [Empc?
Moc® + 2 maEy « Myct = (Gm%C
E,= #mc* = 7~ (a4 x1a%eV/)

b

Em = (.58 <103 eV

;rg(q) V=gt = (9.8)-(i0)- (3lexi0®) =E!Oxf0?m;’5\

(b) 5&2*::.’.&/5 - cd(tph?)= (c/cosh®(=0))d7 = cd?
Cdf ,’:?dZJ

= [cdy - [gd7 = !c:?:ng’




) &= tahy = }d_x = ctanh 7
+

= Jdx = c tanh /dt
M;.,ﬂ dt = ’afdz"' = CaEh%"oIZ"
—> JdX = cfanh 7 cosh Z dr = < sinh?7 dz~
U&5 c7=97T
dx = < sinh (ﬂ_EJ 0T

JJK =f¢5”“( )z

=3 }_X = _\%LQ (Qdah(gj f—ﬂ

@) The makimomt amont of fime the astomot ca fravel s T=%0 grs
n a Tua.r%u‘ of Hhat Yme she dtravds T = LO e, 2

Novt, Ciquring Hae x-Oiskence e this linae

X = f_: (ccsh(a‘rm l) (zﬂf‘?__ifo z’z c:a.sh 1.8 iy .31;.;:-:{0)
o, 75 2.978x10 ¢

= (YOUXIO" M

Xoy= 2%= 2.8%10"m . Ve
3L.6X(0's - 3x(ofm,

é)(mw = 29 G50 1?Jh'fdcmri)

X,.,M R #0000 [‘5"’-%&!& THUSJ, the Eﬂsingﬁ- WA CTﬂ




University of California, Berkeley
Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 5

1. A particle with v = 4/3 decays into two
massless particles with the same energy each.
(a) If the parent particle has mean proper life T,
calculate its mean flight path z before decay.
(b) Calculate the opening angle 1) between the
two daughter particles.

2. Here’s an adult version of Griffiths 12.35. In
a pair annihilation experiment, a positron (mass
m) with total energy E = ymc? hits an electron
(same mass, but opposite charge) at rest. (Grif-
fiths has it the other way around, but that’s un-
realistic — it’s easy to make a positron beam, but
hard to make a positron target.) The two parti-
cles annihilate, producing two photons. (If only
one photon were produced, energy-momentum
conservation would force it to be a massive par-
ticle travelling at a velocity less than ¢.) If one
of the photons emerges at angle 8 relative to the
incident positron direction, show that its energy
E’ is given by

mc? v—1 0

o= o cos b .

(In particular, if the photon emerges perpendic-
ular to the beam, its energy is equal to mc?,
independent of the beam energy. Similar results
have been used to design clever experiments.)
[Hint: Griffiths 12.35 uses “convenient” values
for v and 0, but his solution to this problem
is nevertheless full of messy algebra. Instead,
as in class, write a four-vector equation express-
ing energy-momentum conservation, take the dot
product of either side with itself, and get a con-
cise result in a few lines.]

3. Griffiths 12.44.
4. Griffiths 12.45.
5. Griffiths 12.46.

6. A particle travelling with velocity Sci has a
property represented by the contravariant four-

vector h*. It is known that p,h* = 0, where
p, is the particle’s covariant four-momentum,
where, by convention, repeated Greek indices
are summed from 0 to 3. Write the components
of h* in the laboratory as a function of those
components in the particle’s rest frame which
are noNZzero.

7. The metric tensor g, is defined by
hy, = guwh”

where h* and h, are the contravariant and co-
variant versions of the four-vector h, whose in-
variant length? is equal to h,h*.

(a) Write out the elements of g,, (in flat space-
time, to which special relativity is pertinent).
(b) A contravariant four-tensor 7" is trans-
formed to its covariant version 7},, by two metric
tensor multiplications:

Ty = ngo‘ﬁg/g,, .
Show that

:g'u‘u_

(c) Show that
guagay = 5Z )

where the 4-dimensional Kronecker delta func-
tion satisfies 6, = 0 for u # v and 6, =1 for
0<up<3.

8. Consider the antisymmetric contravariant
tensor H*”. Write out its covariant version H,,
in matrix form, expressing each element of H,,
in terms of the elements of H*.
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Problem Set 6

1. Relativistic transformation of a particle’s po-
lar angle. Consider the usual Lorentz frames
S and &', with spatial origins coincident at
t =t =0. As usual, frame S’ moves in the &
or ' direction with velocity (B¢ with respect to
frame S. A particle is emitted by a radioactive
source that is at rest with respect to S’. As seen
by an observer in S’, the particle travels with
velocity (¢ at an angle 6’ with respect to the
2/ direction. However, as seen by an observer
who is at rest with respect to the frame S, prove
that the particle makes a different angle 6 with
respect to the 2 direction, where

sin 6’

'y(cos 0 + (ﬂ/ﬁ/)) '

tand =

2. and 3. (double credit problem)
Violation of time-reversal invariance was discov-
ered in 1964 in the weak decay

K) —rntn—,

where the K9 and 7+ are quark-antiquark pairs
(including a strange quark in the K? case); a
kaon has =~ % of a pion’s mass. In its own
rest frame, the (spin 0) kaon decays isotropi-
cally. Suppose that the kaons compose a finite
beam whose momentum per particle is 2mgec (=
1 GeV/c). With respect to the beam direction,
find the laboratory angle 6 at which the flux of
decay pions per unit solid angle, dN/dQdt, is
infinite. [Hint: the answer is not 6 = 90°.]

4. Define the contravariant four-vectors

A ={V/c, A}
JH={cp, I}

P = {B/e,p}
k= {w/c, k}

o* ={0/cot, -V} .

Use the convention that repeated Greek indices
are summed from 0 to 3. Employing primar-
ily contravariant four-vectors, but making use of

covariant four-vectors where appropriate, write
a manifestly Lorentz invariant equation that is
equivalent to

(a) the generalized de Broglie relation.

(b) conservation of electric charge.

(c) the Lorentz gauge condition.

(d) the wave equation, including sources, for the
electromagnetic potentials in Lorentz gauge.

5. An object a* is a (contravariant) four-vector
if it transforms (between frames as defined in
Problem 1) according to

w _ ARV
at = Aa" |

where A is the (symmetric) 4 x 4 Lorentz trans-
formation matrix. (Conventionally, the super-
script labels the row and the subscript labels the
column, but this makes no difference for a sym-
metric matrix.) Covariant four-vectors instead
transform according to

al, = (A_l)Za,,

(otherwise the scalar product ay,a” = a)a'*
would not remain invariant for different Lorentz
frames). Consider now an (arbitrary) four-tensor
H" . In frame &, H*Y contracts with covariant
four-vector a, to yield contravariant four-vector
b*, according to

b = H"a,, .
In the frame &', requiring H*¥ to satisfy the
transformation properties of a four-tensor, we
define H'*” so that

b= H'"al, .
Prove that

H'" = AFHPOAY.

This defines the Lorentz transformation property
of a four-tensor.



6. Consider the antisymmetric electromagnetic
field strength tensor

FHY = glAY — 9" A"

Prove that F'* is a four-tensor, i.e. it transforms
according to the results of Problem 5.

7. Using the definitions of 0" and A*, show by
explicit calculation, element by element, that the
covariant electromagnetic field strength tensor is
equal to

0 —EYYc —E?/c —E3/c

P El/c 0 —-B3 B?
=\ B2/ B3 0 -B
E%c -B> B 0

(The sign of this result is opposite to that of
Griffiths; this is expected from his use of a met-
ric tensor with sign opposite to the standard.)

8. Prove that the equation

O F" = poJ”
is equivalent (in vacuum) to the two Maxwell
equations which involve sources. (The two

source-free Maxwell equations are already re-
quired to be true by the definition of A*.)
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Problem Set 7

1. Starting from the elements of FF*¥ as given in
PS 6 Problem 7, apply the metric tensor (twice)
to find the elements of F,, .

2. Define the contravariant field-strength ten-
sor F' and the contravariant dual field-strength
tensor F by

FH = grAY — 0¥ AH
FHY = %e‘“’""Fpg )
where e#?P? =1 for prpo = 0123 or any permu-
tation of 0123 that is achieved by an even number
of interchanges of adjacent indices; e**?? = —1
for prpo = 1023 or any other permutation of
0123 that is achieved by an odd number of in-
terchanges of adjacent indices; and e**P? = 0
otherwise. By explicit calculation, show that the
elements of F#¥ can be obtained from those of
F#* by changing E into ¢B and ¢B into —E.

3. By explicit evaluation, show that 7" F),, is
proportional to E - B, and find the constant of
proportionality. (Because F*F,,,, is obviously a
Lorentz scalar, the Lorentz invariance of E - B is
therefore said to be manifest.)

4. The two source-free Maxwell equations
are equivalent to the single manifestly Lorentz-
invariant equation

DuF"™ =0

Without making any reference to Maxwell’s
equations, using only formal manipulation, show
that F has this property (i.e. its four-divergence
vanishes). [Hint: Write " in terms of e***7
and Fj,,. Then write F,, in terms of 0,, and
A, . Finally, make use (twice) of the behavior
of e"¥P? under interchange of adjacent indices.]

5. Is it possible to have an electromagnetic field
that appears as a purely electric field in one in-
ertial frame and a purely magnetic field in the

other? What criteria must (uniform nonzero)
E and B satisfy such that there exists an iner-
tial frame in which the electromagnetic field is
purely magnetic?

6. An infinitely long straight wire of negligi-
ble cross-sectional area moves in the & direction
(parallel to its length) with speed [c relative
to the lab. As observed in its rest frame, the
wire carries a uniform linear charge density A
Coulombs/meter; in that frame, those charges
are at rest. In the lab, write the elements of the
field strength tensor at the point (0,y,0).

7. Consider a relativistic particle of mass m
and charge e that accelerates in a uniform, static
electric field with magnitude E (there is no mag-
netic field). At ¢ = 0 the particle is at rest.
Solve for n(t > 0), where n = tanh ™' () is the
particle’s boost parameter or “rapidity”.

8. Consider a relativistic particle of mass m and
charge e that is in helical motion under the influ-
ence of a constant magnetic field of magnitude B
(there is no electric field). Its momentum com-
ponent in the direction of the magnetic field is
po. Show that the cyclotron angular frequency
of this particle is

where
VL= ——
JI-&
Meff = \/mQ +p(2)/c2 )

and c(, is the component of the particle’s veloc-
ity that is perpendicular to the magnetic field.
(That is, the transverse motion of a particle that
moves in a helix is the same as that of a heavier
particle that moves purely in a circle.)
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University of California, Berkeley
Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 8
1. Griffiths 11.3.
2. Griffiths 11.4. You need calculate only the
time average Poynting vector, intensity, and
total power radiated (this is much simpler than
computing the full time-dependent expressions).
3. Griffiths 11.9.
4. Griffiths 11.13.
5. Griffiths 11.16. You need calculate only
dP/dSY, not P (thereby avoiding a messy inte-
gral).
6. Griffiths 11.17 (a) and (b) only.
7. Griffiths 11.25.

8. Griffiths 11.31.
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University of California, Berkeley
Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 9

1. A general Jones vector describing a fully co-
herent electromagnetic wave with a nonzero x
polarized component can be written as

1 1
VITD? (b€i5> ’
where b is real.
(a). Show that this represents elliptically polar-

ized light in which the major axis of the ellipse
makes an angle

1 2bcosd
5 arctan (1—7132>
with the x axis.

(b). How can you tell whether the light is right-
hand or left-hand elliptically polarized?

(c). Show that elliptically polarized light can be
written as a sum of linearly and circularly polar-
ized light. What is the relationship between the
major axis of the ellipse and the axis along which
its linearly polarized component is polarized?

2. Pedrottix2 14-5. (In their notation, z is hor-
izontal and y is vertical. You can easily do the
problem without their hint, which seems not to
be of much help.)

3. Pedrottix2 14-12. (“OA” signifies “slow
axis”, and “TA” signifies “transmission axis”.
They have in mind the reflection that occurs
when, after passing through the isolator, the
light enters a material with real refractive index
n>1.)

4. Pedrottix?2 14-22.

5. Calculate the interference pattern that would
be obtained if four identical slits instead of two
were used in Young’s experiment. (Assume equal
spacing of the slits). Make a rough plot.

6. Pedrottix2 12-11.

7. Pedrottix2 12-13.

8. Pedrottix2 12-14.
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Problem Set 12

1. A simple hologram is made as follows: The
object is a single narrow white strip located a
distance z from the recording plate. The plate
is illuminated at normal incidence by a refer-
ence laser beam of wavelength A, which also
illuminates the strip. Show that the resulting
pattern on the hologram is a one-dimensional
grating with a variable spacing s in the y direc-
tion, where y lies in the plane of the plate and
is perpendicular to the strip. Give the numeri-
cal values of s for z = 10 cm and A = 633 nm,
for various values of y: 0, 1, 2, and 4 cm.

2. Referring to the previous problem, show in
detail how, if the hologram is illuminated by the
reference laser in the same way, two diffracted
beams will emerge: one producing a real image
of the strip, the other producing a virtual im-
age. The second beam appears to diverge from
a line corresponding to the original object, while
the first converges toward a real image located
symmetrically at —z on the opposite side of the
plate. Find the actual angles of diffraction for
the various values of y given in the previous
problem. Will there be second-order (or even
higher-order) diffracted beams?

3. Pedrottix2 13-1.
4. Pedrottix2 13-12.
5. Pedrottix2 22-1.
6. Pedrottix2 22-11.
7. Pedrottix2 22-15.

8. Pedrottix?2 22-17.
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MIDTERM EXAMINATION

Directions. Do all three problems, which have unequal weight. This is a closed-book closed-note
exam except for one 8% x 11 inch sheet containing any information you wish on both sides. Cal-
culators are not needed; where numerical results are requested, 30% accuracy is sufficient. Use a
bluebook. Do not use scratch paper — otherwise you risk losing part credit. Cross out rather than
erase any work that you wish the grader to ignore. Justify what you do. Express your answer in
terms of the quantities specified in the problem. Box or circle your answer.

Problem 1. (35 points) A coaxial transmission
line consists of two perfectly conducting circu-
lar cylindrical thin-walled tubes of radii a and b,
respectively, both centered on the Z axis. The
region a < r < bis evacuated. Consider propaga-
tion of electromagnetic waves in the TEM mode
(E, = B, =0) within the vacuum region. Take

%(E(T, ¢)ei(kz—wt))
B(r, 1) = R(B(r, ¢)e' =Y |

=
—~
=
~
~—

I

where k& = w/c. Then, in the vacuum region,
Maxwell’s equations reduce to

and _ _
cB=zZxE,

where 5
VtEV—zg.

(a) (5 points) Show that E can be written as

E(Tv ¢) = *Vt(i)(’l“, ¢)

where

Vo =0.

(If you don’t manage to show this, you may nev-
ertheless assume this result in the later parts.)

(b) (15 points) Assume that ® = ®; on the
outer cylinder, and ® = 0 on the inner cylinder,
where @ is a real constant. Calculate the phys-
ical (real) fields E(r,t) and B(r,t) in the gap
between the cylinders, in terms of ®g.

(c) (15 points) Find Z,, the characteristic
impedance of this transmission line. Z; may
be defined as the ratio of ®y to the maximum
total current flowing on either cylindrical sur-
face. Assume that this current is distributed

uniformly in ¢. Evaluate Zj in ohms for the case
b/a = 2.71828.

Problem 2. (30 points) Event A happens at
spacetime point (ct,z,y,z) = (2,0,0,0); event B
occurs at (0,1,1,1), both in an inertial system S.

(a) (10 points) Is there an inertial system S’ in
which events A and B occur at the same spatial
coordinates? If so, find c|t/y — t3], ¢ times the
magnitude of the time interval in S’ between the
two events.

(b) (10 points) Is there an inertial system S” in
which events A and B occur simultaneously? If
so, find [’y — r5|, the distance in S” between
the two events.

(c) (10 points) Can event A be the cause of
event B, or vice versa? Explain.



Problem 3. (35 points) A point charge e trav-
elling on the x axis has position

r(t) = +x— (t<0)
= —>“<§ (t>0).

That is, the charge reverses direction instanta-
neously at ¢ = 0, while it is at the origin. The
fields that the charge produces are viewed by an
observer at (z,y,z) = (0,1,0) m.

(a) (20 points) What magnetic field B does the
observer see at t = 07

(b) (15 points) At time ¢ such that ¢t = 1 m,
what is the direction of the electric field E seen
by the observer? (You need consider only the
part of the total electric field which is dominant
at exactly that time.) Justify your answer.
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MIDTERM EXAMINATION

Directions: Do all three problems, which have unequal weight. This is a closed-book closed-note
exam except for one 8% x 11 inch sheet containing any information you wish on both sides. Calcu-
lators are not needed, but you may use one if you wish. Use a bluebook. Do not use scratch paper
— otherwise you risk losing part credit. Cross out rather than erase any work that you wish the
grader to ignore. Justify what you do. Express your answer in terms of the quantities specified in

the problem. Box or circle your answer.

Problem 1. (35 points) A parallel-strip trans-
mission line consists of two perfectly conducting
long flat thin metal strips of width D and vac-
uum separation d < D extending a long distance
in the z direction. Take X to be normal to the
strips, and define x = y = 0 at the midpoint of
the gap. Consider the propagation in the gap of
electromagnetic waves of angular frequency w in
the TEM mode (E, = B, =0). Take

E(r,t) = Re(E(x,y)ei(“Z_“’t))
B(r,t) = Re(]j%(x,y)ei(“z*“’t)) ,

where k = w/c. Then, in vacuum, the relevant
Maxwell equations reduce to

0E, OFE
0=—>-+ 8—yy
0B, ok,
Ox oy
B, = E,
By~ B, .

(a) (10 points) Show that E can be written as
E(va) = _vt(i)($7y) )

where 3
Vid =0
and 5 5
Vi=k—+y—.
t=*or +y8y

If you don’t manage to show this, you neverthe-
less should assume this result in the later parts.
(b) (10 points) Assume that

d = 4+d/2

on the top plate, and
d=—dy/2

on the bottom plate, where ®g is a real constant.
Neglecting the small region near the edges, cal-
culate the real physical fields E(r,t) and B(r,t)
in the gap between the plates, in terms of ®.
(c) (15 points) Find the characteristic impedance
Z of this transmission line. Evaluate Z in ohms
for the case D = 100d.

[Hint: One way to do this is to take Z to be the
ratio of ®g to the maximum current flowing on
the inner surface of either plate. Assume that
this current is distributed uniformly in y. An-
other way is to take Z to be /L/C, where L
and C' are the inductance and capacitance per
unit length of the transmission line, and /1/LC
is the phase velocity of the wave.]

Problem 2. (40 points) “Surface” muon beams
are important tools for investigating the prop-
erties of condensed matter samples as well as
fundamental particles. Protons from a cyclotron
produce 7+ mesons (quark-antiquark pairs) that
come to rest near the surface of a solid tar-
get. The pion then decays isotropically to an
(anti)muon (u™) and a neutrino (v) via

at—ut v

Some of the muons can be captured by a beam
channel and transported in vacuum to an exper-
iment. In the limit that the mother pion decays



at the surface of the target (so that the daughter
muon traverses negligible material), the beam
muons have uniform speed (and, as it turns out,
100% polarization as well). For the purposes of
this problem, consider a muon to have 3/4 of the
rest mass of a pion; neglect the neutrino mass.
(a) (15 points) Show that the surface muons
travel at a speed which is a fraction Gy = 0.28 of
the speed of light.

(b) (15 points) A good method for capturing and
transporting surface muons is to place the muon
production target on the axis of a solenoidal
magnet with uniform field B; this axis defines
the beam direction. Muons (of charge e and
rest mass m) that are emitted close to the axial
direction are captured and transported by the
solenoid. In terms of By and other constants,
over what path length L does a surface muon
travel before it returns to the solenoid axis?

(c) (10 points) If a muon’s mean proper lifetime
is 7, what fraction of the muons will decay be-
fore they return to the solenoid axis? (Just in
case you didn’t get part (a) or (b) quite right,
please leave your answer in terms of Gy and L.)

Problem 3. (25 points) Consider the interac-
tion of an electron of charge —e and mass m
with an (externally produced) electromagnetic
field described by the four-potential A*. The
interaction Lagrangian L, in this case is

e

Lint = puAM )

ym

where p* is the particle’s four-momentum. Con-
sider the canonical momentum

Pt =ph —eAH.

If one applies the Euler-Lagrange equations to
Lint, one discovers that if all four components of
AW are independent of any spatial coordinate x,
then P?, the i** component of P*, is conserved.

While these facts may seem like theoretical
niceties, they can be of practical use. Con-
sider a capacitor whose parallel plates lie in the
xy plane. The inside of the bottom plate is at
z = 0 and the inside of the top plate is at z = d.
The bottom plate is grounded, and a positive

voltage Vj is applied to the top plate. The whole
setup is bathed in a uniform magnetic field

B=yB,
which can be derived from a vector potential
A =%xByz.

An electron is emitted from the bottom plate in
the z direction with negligible velocity. It is ac-
celerated in the z direction toward the top plate
by the electric field in the gap; however, as the
electron gains velocity, the Lorentz force from
the magnetic field bends it toward the x direc-
tion. The resulting motion is complicated.

(a) (15 points) Show that the x component of
the electron’s momentum varies only as a func-
tion of its altitude z, and find the dependence.
(b) (10 points) For simplicity assuming that the
electron is nonrelativistic, and taking By to be
fixed, find the minimum value of the applied
voltage V such that the electron makes it all the
way up to the top plate.

[The above describes an oversimplified version of
the static magnetron tube, which generated the
radar signals that won the Battle of Britain.]
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SOLUTION TO MIDTERM EXAMINATION

Directions: Do all three problems, which have unequal weight. This is a closed-book closed-note
exam except for one 8% x 11 inch sheet containing any information you wish on both sides. Calcu-
lators are not needed, but you may use one if you wish. Use a bluebook. Do not use scratch paper
— otherwise you risk losing part credit. Cross out rather than erase any work that you wish the
grader to ignore. Justify what you do. Express your answer in terms of the quantities specified in

the problem. Box or circle your answer.

Problem 1. (35 points) A parallel-strip trans-
mission line consists of two perfectly conducting
long flat thin metal strips of width D and vac-
uum separation d < D extending a long distance
in the z direction. Take X to be normal to the
strips, and define x = y = 0 at the midpoint of
the gap. Consider the propagation in the gap of
electromagnetic waves of angular frequency w in
the TEM mode (E, = B, =0). Take

E(r,t) = Re(E(w, y)e“’“‘“’”)
B(r,t) = Re(]?»(w,y)ei(“z*‘“t)) ,

where k = w/c. Then, in vacuum, the relevant
Maxwell equations reduce to

0E, OFE
0=—2-+ a—yy
0 OE, OE,
ox oy
B, = E,
—cB, =E, .

(a) (10 points) Show that E can be written as
E(va) = _vté(x7y) )

where 3
Vi =0

and

% 0 i 0

Ox yay ’

If you don’t manage to show this, you never-

theless should assume this result in the later

parts.

Vi

Solution:
- OF OFE,
VxE= a—xy ~ oy 0
=E=-Vd=-V,0

o OB 0B,
Oz oy

=V, E
=V (-V:®)

= -V®

(b) (10 points) Assume that
= +d/2

on the top plate, and
d=—dy/2

on the bottom plate, where ® is a real constant.
Neglecting the small region near the edges, cal-
culate the real physical fields E(r,t) and B(r,t)
in the gap between the plates, in terms of ®.
Solution:

The solution ® to Laplace’s equation is unique,
given the boundary conditions:

~ T
b =Py— .
Od
Therefore
- oy
E= %0
*d
P
E = —%—2 cos (kz — wt)



(c) (15 points) Find the characteristic impedance
Z of this transmission line. Evaluate Z in ohms
for the case D = 100d.

[Hint: One way to do this is to take Z to be the
ratio of g to the maximum current flowing on
the inner surface of either plate. Assume that
this current is distributed uniformly in y. An-
other way is to take Z to be /L/C, where L
and C' are the inductance and capacitance per
unit length of the transmission line, and /1/LC
is the phase velocity of the wave.]

Solution:

Method 1:

There are no time-varying fields within the per-
fect conductors. Therefore, across the inner
boundary of either conductor, from Ampere’s
law, ignoring directions and signs,

AB = ,U,()K
Brax = MOKmax ,

where K,..x is the maximum surface current
density (amperes/m). The impedance is

D
KonaxD
po®o
BaxD
cio®Po
ErnaxD
C,U()‘I)()d
dyD

Ho &
€0 D
=3.77Q.

Method 2:

1 1
T e VIO
€
€
oy
L €
Z=\o=\e
_ [eopod?

2D
_ [k d
60D
=3.77Q.

Problem 2. (40 points) “Surface” muon beams
are important tools for investigating the prop-
erties of condensed matter samples as well as
fundamental particles. Protons from a cyclotron
produce 7+ mesons (quark-antiquark pairs) that
come to rest near the surface of a solid tar-
get. The pion then decays isotropically to an
(anti)muon (u™) and a neutrino (v) via

at s ut v

Some of the muons can be captured by a beam
channel and transported in vacuum to an exper-
iment. In the limit that the mother pion decays
at the surface of the target (so that the daughter
muon traverses negligible material), the beam
muons have uniform speed (and, as it turns out,
100% polarization as well). For the purposes of
this problem, consider a muon to have 3/4 of the
rest mass of a pion; neglect the neutrino mass.
(a) (15 points) Show that the surface muons
travel at a speed which is a fraction Gy = 0.28 of
the speed of light.

Solution:

Let wu, m, and v be the four-momenta of the
muon, pion, and neutrino, respectively, with
units such that ¢ = 1.  Enforcing energy-



momentum conservation,

T=Wu+v
V=T—L
vov=(rx—p)-(r—p)
O=m-m+p-p—2m-p
Ozmi+mi—2mﬂEu
2 2
my; +m
Eﬂziﬂ.
2mn

Similarly, permuting the same equation, and us-
ing EV = Pv = DPu,

w=m—-v
pop=(r—v)-(r-v)

m2=n-m4+v-v—21-v

"
=m24+0-2m,E,
= mfr —2mgp,
_mz—mg

Pu 2m.

Taking the ratio of these two results

_ DPu
50——Eu
m%—mi
_mfr—i-mﬁ
16
=2 —1
9
= = — =0.28.
B41 25

(b) (15 points) A good method for capturing and
transporting surface muons is to place the muon
production target on the axis of a solenoidal
magnet with uniform field B; this axis defines
the beam direction. Muons (of charge e and
rest mass m) that are emitted close to the axial
direction are captured and transported by the
solenoid. In terms of By and other constants,
over what path length L does a surface muon
travel before it returns to the solenoid axis?
Solution:

The motion is helical with angular frequency
equal to the (relativistic) cyclotron frequency.

Working in the lab,
eB

ym
_eB\1-53
N m

2

Qcyclotron —

T =

Qcyclotron
2mm

 eByJ1-— 32
L:ﬂocT

_ 2mmfBoc
eBy\/1— 32 '

(c) (10 points) If a muon’s mean proper lifetime
is 7, what fraction of the muons will decay be-
fore they return to the solenoid axis? (If you are
concerned that you didn’t get part (a) or (b)
quite right, you may leave your answer in terms
of Bp and L.)

Solution:

In the lab, the time interval before the muon re-
turns to the solenoid axis is T' = L/(fGyc) (above).
In the proper (rest) frame of the muon, the same
interval is 7" = T'/~p. If the mean life is 7, the
survival probability at time 7" is exp (=1"/7).
Therefore the fraction F of muons that fail to
survive before returning to the solenoid axis is

F=1-exp(-T"/7)
=1—exp (=T/(07))
L \/1-p3
=1—exp <_ETO) .

The above is an acceptable solution. Expressed
in terms of the answer to (b), it is

2mm )

le—exp(— 5
eBT

independent of (.

Problem 3. (25 points) Consider the interac-
tion of an electron of charge —e and mass m
with an (externally produced) electromagnetic
field described by the four-potential A*. The
interaction Lagrangian Li,; in this case is

e
Ling = ——pu A",

ym



where p# is the particle’s four-momentum. Con-
sider the canonical momentum

Pt =pt — A" .

If one applies the Euler-Lagrange equations to
Lint, one discovers that if all four components of
AF are independent of any spatial coordinate z?,
then P?, the i** component of P, is conserved.

While these facts may seem like theoretical
niceties, they can be of practical use. Con-
sider a capacitor whose parallel plates lie in the
xy plane. The inside of the bottom plate is at
z = 0 and the inside of the top plate is at z = d.
The bottom plate is grounded, and a positive
voltage Vj is applied to the top plate. The whole
setup is bathed in a uniform magnetic field

B=yBo,
which can be derived from a vector potential
A= )A{B()Z .

An electron is emitted from the bottom plate in
the z direction with negligible velocity. It is ac-
celerated in the z direction toward the top plate
by the electric field in the gap; however, as the
electron gains velocity, the Lorentz force from
the magnetic field bends it toward the x direc-
tion. The resulting motion is complicated.

(a) (15 points) Show that the x component of
the electron’s momentum varies only as a func-
tion of its altitude z, and find the dependence.
Solution:

The components of A* are

Vi Wiz
A0 = = = 2%

c cd
A:)?[Boz.

Each component of A* is independent of both x
and y. Therefore, both the x and y components
of P* are conserved. Since A has no y com-
ponent, conservation of the y component of P*
merely confirms that the electron moves in the
xz plane, which we could have deduced from the
Lorentz force law. In the = direction,

Py — €A, = (px(z =0)—eA,(z = 0))
=0-0
pe = €Ay
=eByz .

(b) (10 points) For simplicity assuming that the
electron is nonrelativistic, and taking By to be
fixed, find the minimum value of the applied
voltage V such that the electron makes it all the
way up to the top plate.

[The above describes an oversimplified version of
the static magnetron tube, which generated the
radar signals that won the Battle of Britain.|

Solution:
If the electron barely grazes the top plate, it will
be travelling parallel to it, or entirely in the x
direction. Since the magnetic field does no work,
the electron’s kinetic energy at that point will be
equal to its loss of potential energy eVf. Using
the result from part (a),
2
eVo = Pz

2m

¢2 B2
2me

eB2d>
2m

Vo =
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FINAL EXAMINATION

Directions. Do all seven problems, which have unequal weight. This is a closed-book closed-note
exam except for two 8% x 11 inch sheets containing any information you wish on both sides. Cal-
culators are not needed. Use a bluebook. Do not use scratch paper — otherwise you risk losing part
credit. Cross out rather than erase any work that you wish the grader to ignore. You must justify
what you do or say. Express your answer in terms of the quantities specified in the problem. Box or
circle your answer. Remember that when you are asked for the value of a vector quantity, you must

supply both the magnitude and direction.

1. (20 points)

Write down the (real) electric and magnetic fields
for a monochromatic plane wave in vacuum of
amplitude FEy, angular frequency w, and phase
angle 0 (relative to a cosine). Do it for two cases:
the wave is

(a) (10 points) traveling in the negative-z direc-
tion and polarized in the z direction;

(b) (10 points) traveling in the direction from
the origin to the point (1,1,0), with polarization
perpendicular to the z axis.

2. (10 points)

Consider a spherical pulsating bubble with con-
stant total charge ) uniformly distributed on
the surface, and with time-dependent radius
r(t) = a(l 4+ ecoswt), where a, €, and w are con-
stants. Find the total power P that is radiated.

3. (35 points)

A particle with charge e moves with speed (¢
around a circle of radius b centered at the origin.
The circle is in the plane z = 0. The motion is
ultrarelativistic, i.e. (1 — £%)71/2 > 1.

Liénard’s equation for the Poynting vector S,
arising from acceleration of a point particle is

x By
)3 } }ret'

~

e L6 (R Rx[R-
S, =(—)* == -
4meq C{RQ[ (1-R-

@[

Here ﬁc is the particle’s velocity, Bc is its ac-
celeration, r is a vector from the origin to the
observer, r’ is a vector from the origin to the
particle, R = r — r’, and the subscript “ret”

means that quantities are to be evaluated at
time t — R/c.

(a) (20 points) Calculate the radiated power per
unit area observed at (0,0, z), where z > b.

(b) (15 points) Is Zz a direction in which the
power radiated per unit solid angle is near the
maximum for this motion? Explain.

4. (35 points)

Write down the Fraunhofer diffraction pattern
I1(0)/I(6 = 0) for monochromatic light of wave-
length A\ normally incident on a system of four
thin slits. Two slits are at y = (a = b)/2, and
two are at y = —(a £ b)/2.



5. (35 points)

A circularly polarized plane wave of wavelength
A is normally incident on a double thin slit (sep-
aration d). In front of the top slit is placed
a quarter wave plate. Obtain the Fraunhofer
diffraction pattern I(0)/I(0 = 0). Take the op-
tical thickness of the plate to be such that the
irradiance is largest at 6 = 0.

6. (30 points)
Two perfect parallel mirrors enclose a sandwich
consisting of two layers: a dielectric of (real con-
stant) refractive index n between 0 < x < L, and
a region of vacuum between L < z < (n+ 1)L
A plane standing EM wave (the sum of two
traveling waves with opposite directions of prop-
agation) propagates along the mirrors’ normal.
Calculate the wave’s lowest possible angular fre-
quency.

7. (35 points)

A plane wave is normally incident on an opaque
screen in the plane z = 0. The screen blocks
the semi-infinite region x < 0. It also has a
semicircular protrusion of radius R, centered at
x =y = 0. Thus the screen also blocks the

circular region /22 + 32 < R.

An observer is stationed at (0,0, R2/)), where A
is the wavelength. Calculate the ratio

Iscreen /-[1’10 screen

of irradiances seen by the observer with and
without the screen in place.
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FINAL EXAMINATION

Directions. Do all six problems, which have unequal weight. This is a closed-book closed-note exam
except for three 8% x 11 inch sheets containing any information you wish on both sides. Calculators
are not needed. Use a bluebook. Do not use scratch paper — otherwise you risk losing part credit.
Cross out rather than erase any work that you wish the grader to ignore. You must justify what
you do or say. Express your answer in terms of the quantities specified in the problem. Box or circle
your answer. Remember that when you are asked for the value of a vector quantity, you must supply

both the magnitude and direction.

1. (40 points)
The total power P(t) radiated by an ideal elec-
tric dipole p(t) is given by the Larmor formula

1 2[B(tet)|?

P(t) =
(t e

47T€0

where t.o 1S the retarded time.

(a) (15 points) Consider a single positive charge
e located at position (x,y,z) = (d,0,dcoswt),
where d and w are constants. Approximate
d < A, where X is the vacuum wavelength of
the emitted radiation. Working to second order
in the small quantity d/)\, compute the time-
averaged power (P) radiated by this charge.

(b) (10 points) How much time-averaged me-
chanical work per unit time (dW/dt) must be
exerted upon this charge in order to keep it
moving as specified in (a)?

(c) (15 points) A second positive charge e is
added, located at position (—d,0,—dcoswt).
What is the new time-averaged power (P’) radi-
ated by both charges? Continue to work only to
second order in the small quantity d/\.

2. (35 points)
A plane electromagnetic wave is described by

SE pT— )

where

E=E((2-)%+(1-2i)y),

and Ey, k, and w are real constants. A linear
polarizer is placed in the beam, and oriented so
that the largest possible fraction of the original
beam’s irradiance is transmitted. What is that
fraction?

3. (35 points)

A plane wave Ujcos (kz — wt) is incident nor-
mally on a screen. Fraunhofer conditions apply.
The diffracted wave is observed from z — oo at
various angles 6 with respect to the z axis.

(a) (15 points) Assume that the screen has three
long parallel slits with equal spacing b and equal
negligible width. Compute the irradiance ratio
I1(0)/1(6 = 0).

(b) (20 points) Instead assume that the screen
has five long parallel slits with equal spacing b.
The slit widths are still negligible; however, they
are a function of the slit location, so that the five
slit areas vary according to the ratio 1:2:3:2:1.
Compute the irradiance ratio I(6)/I(6 = 0).



4. (20 points)

A Survivor contestant tries to signal a blimp hov-
ering nearly overhead. It is pitch dark, and his
only source of light is an infinitesimal, monochro-
matic, isotropic-light-emitting diode (LED). The
naked LED isn’t quite bright enough to be
seen by his blimp-borne rescuer. Remembering
Physics 110B, the contestant resolves to amplify
the light signal that the rescuer perceives.

(a) (10 points) The contestant stretches a large
opaque plastic sheet over a flat frame and pokes
a small (couple of mm dia) circular hole in it. He
carefully positions the hole directly between the
LED and the blimp, separated from the LED by
a couple of meters. Relative to the naked LED, is
it possible that the irradiance seen by the rescuer
increases? If so, by what maximum factor?

(b) (10 points) Lacking a plastic sheet, the con-
testant disassembles his bicycle hub to obtain a
small (couple of mm dia) blackened steel ball.
Using a spiderweb thread, he carefully hangs the
ball directly between the LED and the blimp,
separated from the LED by a couple of meters.
Relative to the naked LED, is it possible that
the irradiance seen by the rescuer increases? If
80, by what maximum factor?

5. (35 points)

In the Driide model for electromagnetic wave
propagation in a dilute material medium, elec-
trons (of mass m and charge —e) satisfy the
equation of motion

mx = —yma — kx — ek, ,

where 7 is an effective damping constant, k is an
effective spring constant, and F, is an electric
field component.

Working at a particular angular frequency w,
and defining the complex electric field E, and
complex current density J, through

E. =Re (E~w exp (—iwt))
Jp = Re(jz exp (—iwt)) ,

one can then define the complex conductivity &
through

J,=G6E, .

In a medium having N electrons/m? that are so
weakly bound that k is negligible, use the above
information to derive the complex conductivity
¢ as a function of angular frequency w.

[Hint: Define z = Re(Z exp (—iwt))]

6. (35 points)
A point charge e travelling on the z axis has
position
r(t) = +20ct (t <0)
= —zfct (t >0),

where ( is a positive constant that is not < 1.
That is, the charge reverses direction instanta-
neously at ¢t = 0, while it is at the origin. The
fields that the charge produces are viewed by an
observer at (x,0,0), where z > 0.

(a) (20 points) What magnetic field B does the
observer see at ¢t = 07

(b) (15 points) At time ¢ such that ¢t = x (ex-
actly!), what is the direction of the electric field
E seen by the observer? (You need consider only
the part of the total electric field which is domi-
nant at exactly that time.) Justify your answer.
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SOLUTION TO FINAL EXAMINATION

Directions. Do all six problems, which have unequal weight. This is a closed-book closed-note exam
except for three 8% x 11 inch sheets containing any information you wish on both sides. Calculators
are not needed. Use a bluebook. Do not use scratch paper — otherwise you risk losing part credit.
Cross out rather than erase any work that you wish the grader to ignore. You must justify what
you do or say. Express your answer in terms of the quantities specified in the problem. Box or circle
your answer. Remember that when you are asked for the value of a vector quantity, you must supply

both the magnitude and direction.

1. (40 points)
The total power P(t) radiated by an ideal elec-
tric dipole p(t) is given by the Larmor formula

1 2|I“)(tret)‘2
P(t) = — =Pret/l
*) 4meg  3c3 ’

where t,¢t is the retarded time.

(a) (15 points) Consider a single positive charge
e located at position (x,y,z) = (d,0,dcoswt),
where d and w are constants. Approximate
d < A, where X is the vacuum wavelength of
the emitted radiation. Working to second order
in the small quantity d/X, compute the time-
averaged power (P) radiated by this charge.
Solution:

Applying the Larmor formula to an electric
dipole

1 2‘1")(tret)|2

P =
dmey  3c3
1 2e2d%w* cos® wtyet
" dreg 3¢3
1 e2d2wt
(Py=—— 2%
dmeg  3c3

(b) (10 points) How much time-averaged me-
chanical work per unit time (dW/dt) must be
exerted upon this charge in order to keep it mov-
ing as specified in (a)?

Solution:

The mechanical work done on the charge per
unit time would need to supply the power that
it radiates. Thus

1 e2d?w?
(dW/dt) = (P) = Ineo 38

This answer may also be obtained by considering
the radiation reaction force on the charge.

(c) (15 points) A second positive charge e is
added, located at position (—d,0,—dcoswt).
What is the new time-averaged power (P’) radi-
ated by both charges? Continue to work only to
second order in the small quantity d/A.
Solution:

The second charge is located on the opposite
side of the origin with respect to the first charge.
Thus it cancels the electric dipole moment due
to the first charge. Higher-order multipole ra-
diation may remain, but such contributions will
be raised to higher powers of d/\. Therefore, to
the same order in d/\, (P’) vanishes.

2. (35 points)
A plane electromagnetic wave is described by

E(z,t) = Re(E exp (i(kz — wt))) ,

where

E=FE)((2-ix+(1-2)9),

and FEy, k, and w are real constants. A linear
polarizer is placed in the beam, and oriented so
that the largest possible fraction of the original
beam’s irradiance is transmitted. What is that
fraction?



Solution
The beam is described by the (unnormalized)

Jones vector
_( 2—1
J_<1—m>'

A linear polarizer with transmission axis oriented
along the X direction has the Jones matrix

M(0) = ((1) 8) .

If the polarizer’s transmission axis is oriented at
angle ¢ with respect to the X direction, it is
represented by the Jones matrix
M(¢) =R 'M(0)R
cos? ¢

- <sin¢)cos¢>

where the two-dimensional rotation matrix is
R= ( cos ¢ squ) .
cos ¢

—sin ¢
Before the polarizer, the beam irradiance I is
proportional to

sin ¢ cos ¢>

sin? ¢

ITocJJ

=(2+i L+%)(f:;)
=4+1)+(1+4)=10.

After the polarizer, the irradiance I’ is propor-

tional to
I'oc (MJ)MJ

= JHMTM).T .
But MM = M, as can easily be verified:
Mt = M, and adding a second ideal polar-
izer does nothing beyond the effect of the first,
so M? = M. Thus
IToc JIMJ
=(244¢ 142i)x

cos? ¢ sin ¢ cos ¢ 2—1
% sin ¢ cos ¢ sin? ¢ 1—2:
=5+ 8sin¢cos ¢

=9 (max)

when ¢ = /4. Therefore, at maximum, I'/I =
9/10.

3. (35 points)

A plane wave Upcos (kz — wt) is incident nor-
mally on a screen. Fraunhofer conditions apply.
The diffracted wave is observed from z — oo at
various angles 6 with respect to the z axis.

(a) (15 points) Assume that the screen has three
long parallel slits with equal spacing b and equal
negligible width. Compute the irradiance ratio
I1(0)/1(0 = 0).

Solution:

In analogy to the standard double slit problem,

U) <1+ e e
where 8 = kbsin 0. Therefore

U(f) x 1+ 2cosf
(1 + 2cos 3)?

1

This result is equivalent to §sin2 (3y)/ sin? 7,

where v = 3/2.

(b) (20 points) Instead assume that the screen
has five long parallel slits with equal spacing b.
The slit widths are still negligible; however, they
are a function of the slit location, so that the five
slit areas vary according to the ratio 1:2:3:2:1.
Compute the irradiance ratio 1(6)/I(6 = 0).
Solution:

This configuration is equivalent to a triple-
superposition of the triple-slit problem in (a),
with the characteristic spacing of the superpo-
sition equal to the characteristic spacing of the
slit.  Therefore it is a convolution of the ar-
rangement in (a) with itself. Under Fraunhofer
conditions, the image is a Fourier transform of
the aperture function, and the Fourier transform
of a convolution is the product of the individual
Fourier transforms. Therefore

(14 2cosB)*
I1(0) 81 '




This answer may also be obtained by the brute
force methods of (a).

4. (20 points)

A Survivor contestant tries to signal a blimp hov-
ering nearly overhead. It is pitch dark, and his
only source of light is an infinitesimal, monochro-
matic, isotropic-light-emitting diode (LED). The
naked LED isn’t quite bright enough to be
seen by his blimp-borne rescuer. Remembering
Physics 110B, the contestant resolves to amplify
the light signal that the rescuer perceives.

(a) (10 points) The contestant stretches a large
opaque plastic sheet over a flat frame and pokes
a small (couple of mm dia) circular hole in it. He
carefully positions the hole directly between the
LED and the blimp, separated from the LED by
a couple of meters. Relative to the naked LED, is
it possible that the irradiance seen by the rescuer
increases? If so, by what maximum factor?
Solution:

The hole could consist of an odd number of
Fresnel zones (one zone would be convenient,
given the rough dimensions), in which case the
irradiance seen by the rescuer would be boosted
by a factor of ~ 4.

(b) (10 points) Lacking a plastic sheet, the con-
testant disassembles his bicycle hub to obtain a
small (couple of mm dia) blackened steel ball.
Using a spiderweb thread, he carefully hangs the
ball directly between the LED and the blimp,
separated from the LED by a couple of meters.
Relative to the naked LED, is it possible that
the irradiance seen by the rescuer increases? If
so, by what maximum factor?

Solution:

Using the edge of the ball (as opposed to R = 0)
as the beginning of the first Fresnel zone, and
adding up the contributions of the zones, the
irradiance seen by the rescuer would be approx-
imately the same as if the ball were removed.
Therefore the irradiance seen by the rescuer
would not increase.

This result can also be obtained by use of Babi-
net’s argument.

5. (35 points)
In the Driide model for electromagnetic wave

propagation in a dilute material medium, elec-
trons (of mass m and charge —e) satisfy the
equation of motion

mx = —yma — kxr —eFE, |

where + is an effective damping constant, k is an
effective spring constant, and FE, is an electric
field component.

Working at a particular angular frequency w,
and defining the complex electric field E, and
complex current density J, through

E. =Re (E~x exp (—iwt))
J, = Re(jx exp (—iwt)) ,

one can then define the complex conductivity &
through

J. =GE, .

In a medium having N electrons/m? that are so
weakly bound that k is negligible, use the above
information to derive the complex conductivity
¢ as a function of angular frequency w.

[Hint: Define z = Re(Z exp (—iwt)).]

Solution:

Substituting

z = Re(Z exp (—iwt)) ,

in the equation of motion, and neglecting k£ with
respect to ymw in view of the negligibly weak
binding, we obtain

2

—mw’ T = iIymwT — ek,

- eE,/m
T=—".
w2 +iyw
Solving for J,,
J: = —eNzx
= jx = iweNZ
B iwNe2E, /m
w4 iw
-
g = —=—
E,
_ Ne*/m
oy —dw

3



6. (35 points)
A point charge e travelling on the z axis has
position
r(t) = +zpBct (t <0)
= —2z0ct (t>0),

where (3 is a positive constant that is not < 1.
That is, the charge reverses direction instanta-
neously at t = 0, while it is at the origin. The
fields that the charge produces are viewed by an
observer at (z,0,0), where z > 0.

(a) (20 points) What magnetic field B does the
observer see at t = 07

Solution:

At t = 0, the magnetic field observed at (z,0,0)
was produced by the charge when it was at t,et <
0, when it was still moving in the positive z di-
rection. Therefore this is the field of a uniformly
moving charge. To evaluate it, we first obtain
the field in a (primed) coordinate system with its
origin attached to the charge. In the primed sys-
tem, the observer is located at the coordinates
(«',y',2") = (x,0,vz — yfect) = (x,0,0). There
the (purely electrostatic) field is given by

. e
E = X—.
dmegx

In the lab frame, using the Lorentz transforma-
tion for electromagnetic fields, the magnetic field
is given by

BH:B‘,‘:O
B, =B, +70 x E/|
e
=0 7 X X
+7ﬂ47‘(’€01}2z X
e .
B, =12 .
+ c47reo:r2y

At this observation point the § direction is the
same as the ¢ direction, as one expects.

This answer may also be obtained by using
the standard expressions for the electromag-
netic field of a uniformly moving point charge,
e.g. Griffiths 10.68-10.69.

(b) (15 points) At time ¢ such that ¢t = = (ex-
actly!), what is the direction of the electric field
E seen by the observer? (You need consider only

the part of the total electric field which is domi-
nant at exactly that time.) Justify your answer.
Solution:

At t = z/c, the retarded time is et = 0. So
the fields seen by the observer are the fields of
a charge that is reversing the direction of its
velocity (with infinite acceleration in this case).
Therefore the fields at this time are dominated
by the acceleration fields. For a charge accelerat-
ing along z, E is in the 0 direction, or —z for this
observer. However, in this problem the charge
accelerates in the —% direction, so E is along +2Z.
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